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Abstract This article presents a systematic approach for

correlating the refractive index of different material kinds

and forms with experimentally measured inputs like

wavelength, temperature, and concentration. The correla-

tion is accomplished using neural network models, which

can deal effectively with the nonlinear nature of the

problem without requiring a predefined form of equation,

while taking into account all the parameters affecting the

refractive index. The proposed methodology employs the

powerful radial basis function network architecture and

the neural network training procedure is accomplished

using an innovative algorithm, which provides results with

increased prediction accuracy. The methodology is applied

to two cases, involving the estimation of the refractive

index of semiconductor material crystals and an ethanol–

water mixture and the results show that the refractive index

predictions are accurate approximately to the same number

of decimal places as the real measurements. Comparisons

with other neural network training methods, but also with

empirical forms like the Sellmeier equation, highlight the

superiority of the proposed approach.

Introduction

The refractive index n of a material is expressed as the ratio

of the velocity of light in vacuum relative to the velocity of

light in the considered material. The refractive index is a

fundamental physical property of substance related not

only to its optical, but also electrical, magnetic, thermal,

and mechanical properties [1–4]. In general, n depends on

light wavelength and temperature, effects commonly

referred to as chromatic and temperature dispersion,

respectively. However, in many situations there exist

numerous additional parameters influencing the refractive

index, ranging from doping level and composition in

amorphous materials and semiconductor or dielectric

crystals [5–9], to particle size and concentration in nano-

composite materials [10–12], salinity and pressure in sea-

water [13, 14], humidity and CO2 content in air [15], etc.

Several instruments (often commercially available) are

employed for the experimental measurement of the

refractive index, exploiting interferometric [16], deviation

[17], critical angle [18], Brewster angle [19], index

matching [20], and immersion [21] approaches. Most typ-

ically, the achievable accuracy with these standard setups

is approximately equal to, or just exceeds, four decimal

digits. However, recent advances in laser technology seem

to pave the way for significant improvements in this field;

for instance, the refractive index of several gases has been

determined with a precision reaching nine decimal digits

by use of a relatively expensive and complicated frequency

comb setup [22].

The development of ultra-precise refractive index mea-

surement techniques that detect more than four decimal

digits may be useful for several nanophotonics engineering

applications. For example, the calculation of grating period

K for quasi-phase-matching nonlinear interactions requires

knowledge of the refractive index at the interacting

wavelengths [23]. Previous material processing obstacles

that limited grating period K to the micrometer scale now

seem to be raised, permitting for the first time the fabri-

cation of quasi-phase-matching nanostructures [24]. This
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size reduction naturally generates the need for even more

accurate knowledge of n. Other applications with similarly

stringent requirements include optical metrology [25], as

well as various optical diagnostic systems for the identifi-

cation of a particular substance [26], the confirmation of its

purity [27], or the measurement of its concentration [28].

In such situations, precise measurement of the refractive

index is not sufficient in itself, due to the fact that experi-

mental data are available only at discrete experimental

conditions. In order to predict n outside measurement

conditions, numerous empirical or semi-empirical modeling

solutions have been proposed. Building such models is not

an easy task, since the relationship between the refractive

index and the parameters affecting it is usually nonlinear in

nature and quite often poorly understood. In the simplest

case only wavelength dependence is considered to produce

chromatic dispersion relations of the Sellmeier form [29].

Temperature dependence may also be accounted for by

use of an extended temperature-dependent Sellmeier-type

equation [30]. Several studies have reported the inclusion of

additional parameters in specific situations. Indicatively,

Liu and Daum [31] investigated the consistency of mixing

rules for calculating the effective refractive index for mul-

ticomponent mixtures. Xu et al. [32] built a quantitative

structure–property relationship model to predict n for linear

polymers by applying four molecular descriptors. Rabah

et al. [33] calculated the refractive index—among other

properties—of binary semiconductor compounds based on

empirical methods. Yu et al. [34] used density functional

theory (DFT) calculations for the prediction of the refrac-

tive index of vinyl polymers. Cao et al. [35] employed the

Eisenlohr and Vogel methods to estimate the refractive

index for pharmaceutical solids.

Evidently, the development of ultra-precise refractive

index measurement techniques should be followed by the

development of novel, more powerful simulation tools. In

this study, we present the use of neural networks [36] for

predicting the refractive index of various material forms

(crystals and binary mixtures) using as inputs experimental

data. In order to achieve better accuracy, we are employing

a special architecture called radial basis function (RBF)

networks [37], using a non-symmetric version of the fuzzy

means algorithm [38] as training technique. Having the

ability to identify underlying highly complex and nonlinear

relationships from input–output data only, the neural net-

work approach presents certain advantages: (a) it is appli-

cable to any material or material form, (b) it can account

for all parameters affecting n, without requiring a prede-

fined form of equation, and (c) it offers increased precision

in the refractive index prediction.

Not surprisingly, the capabilities of neural networks

have already been exploited for modeling and simulation in

materials science: Ning [39] has correlated the glass

transition temperature of fluorine-containing polymers with

three structural parameters using neural networks. Impor-

tant work has also been done in applying neural networks

for predicting critical parameters in steel materials [40–43].

Other computational intelligence methodologies like fuzzy

logic [44] and genetic algorithms [45–47] have also been

applied successfully. As far as specific applications of

neural networks for refractive index model building are

concerned, Ghosh et al. [48] modeled a plasma-enhanced

chemical vapor deposition (PECVD) process and predicted

the refractive index and the deposition rate of PECVD

silicon nitride films using neural networks. Tabet and

McGahan [49] used neural networks to calculate the

thickness and refractive index of thin films from spectro-

scopic reflectometry data. However, these approaches use

as inputs process-specific parameters, contrary to the

methodology proposed in this article which is completely

application-independent.

The rest of this article is organized as follows: In the next

section, we present the RBF neural network architecture, the

fuzzy means training algorithm and the non-symmetric

variation. In ‘‘Results and discussion’’, the proposed meth-

odology is applied to two case studies. The first one concerns

the prediction of the refractive index of semiconductor

crystals, while the second one the prediction of the refractive

index of binary mixtures. The article concludes by outlining

the advantages of the proposed approach.

The RBF neural network architecture

An RBF network can be considered as a special three layer

neural network, which is linear with respect to the output

parameters after fixing all the RBF centers and nonlinear-

ities in the hidden layer. The typical structure of an RBF

network is shown in Fig. 1. The input layer distributes the

N input variables to the L nodes of the hidden layer. Each

node in the hidden layer is associated with a center, equal

in dimension with the number of input variables. Thus, the

hidden layer performs a nonlinear transformation and maps

the input space onto a new higher dimensional space. The

activity ml(xk) of the lth node is the Euclidean norm of the

difference between the kth input vector and the node center

and is given by:

vlðxkÞ ¼ xk � x̂lk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

ðxk;i � x̂l;iÞ2
v

u

u

t ; k ¼ 1; 2; . . .;K

ð1Þ

where K is the total number of data, xT
k ¼ xk;1; xk;2; . . .; xk;N

� �

is the input vector, and x̂T
l ¼ ½x̂l;1; x̂l;2; . . .; x̂l;N � is the center

of the lth node.
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The output function of the node is a radially symmetric

function. A typical choice, which was also used in this

study, is the Gaussian function:

f ðmÞ ¼ exp � v2

r2

� �

ð2Þ

where r is the width of the node.

The final output ŷk of the RBF network for the kth data

point is produced by a linear combination of the hidden

node responses, after adjusting the weights of the network

appropriately:

ŷk ¼
X

L

l¼1

wlf ml xkð Þð Þ; k ¼ 1; 2; . . .;K ð3Þ

where wl stands for the synaptic weight of the lth node.

Standard approaches decompose the problem of RBF

network training in two steps: The first step aims at

determining the centers x̂l of the hidden layer nodes. A

standard technique for accomplishing this task is the

k-means algorithm [50], which is an unsupervised cluster-

ing method. The second step involves the determination of

the output-layer weights by linear least squares regression.

Recently, an innovative approach called the fuzzy means

algorithm has been introduced to replace the k-means

algorithm in the selection of the hidden layer nodes [38].

The fuzzy means algorithm has several advantages over the

typical approach, including faster computational times and

automatic determination of the size of the network, and

has been used successfully in a number of applications

including estimation of critical properties of materials [51,

52], online system identification [53], automatic control of

industrial processes [54], variable selection problems [55,

56], etc. In this study, we are employing a non-symmetric

version of the fuzzy means algorithm that provides

improved results in terms of increased prediction accuracy

[57]. A brief discussion about fuzzy logic, the fuzzy means

algorithm, and its non-symmetric variation is given below,

while the interested reader is referred to the original

publications.

Fuzzy logic and the fuzzy means algorithm

The fundamental difference of fuzzy logic compared to

conventional techniques is on the definition of sets [58].

Traditional set theory is based on bivalent logic where a

number or object is either a member of a set or it is not.

Contrary to that, fuzzy logic allows a number or object to

be a member of a set to a certain degree. This degree is a

number between zero and one and is called ‘‘membership

degree’’. The function mapping the input space to mem-

bership values (or degrees) is called the membership

function. One of the simplest membership functions has

triangular form, where the triangle’s tip defines the

maximum degree of membership. The fuzzy sets defined

by such membership functions are called triangular fuzzy

sets. An example is given in Fig. 2, where we consider

the fuzzification of a crisp temperature value. The input

space in this case is partitioned to five triangular fuzzy

sets named VL (Very Low), L (Low), M (Medium),

H (High), and VH (Very High). A crisp temperature of

37 �C is transformed to a membership degree of 0.7 to

the fuzzy set ‘‘High’’ and 0.3 to the fuzzy set ‘‘Very

High’’.

Consider a system with N normalized input variables xi,

where i = 1,…,N. The domain of each input variable is

partitioned into an equal number of one-dimensional tri-

angular fuzzy sets, c. Each fuzzy set can be written as:

Ai;j ¼ ai;j; da
� �

; i ¼ 1; . . .;N; j ¼ 1; . . .; c: ð4Þ

where ai;j is the center element of fuzzy set Ai;j, and da is

half of the respective width (due to the symmetric

partition all the widths are equal). This partitioning

technique creates a total of cN multi-dimensional fuzzy

subspaces Al, where l = 1,…,cN. Each multi-dimensional

fuzzy subspace is generated by combining N one-

dimensional fuzzy sets, one for each input direction.

One can define the center vector al and the side vector da
of each fuzzy subspace:

Fig. 1 Radial basis function network architecture
Fig. 2 Fuzzification example: conversion of a crisp temperature

value to membership degrees
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Al ¼ al; da
� �

¼ al
1;j1
; al

2;j2
; . . .; al

N;jN

h i

; da; da; . . .; da
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

N

2

4

3

5

8

<

:

9

=

;

;

l ¼ 1; . . .; cN

ð5Þ

where al
i;ji

is the center element of the one-dimensional

fuzzy set Ai;ji that has been assigned to input i. Each one of

the produced fuzzy subspaces is a candidate for becoming

an RBF center, but only a few of those will be finally

selected. The selection is based on the idea of the

multidimensional membership function lAl xkð Þ of an

input vector xk to a fuzzy subspace Al which is given by

Nie [59]:

lAl xkð Þ ¼
1� rl xkð Þ; if rl xkð Þ� 1

0; otherwise




ð6Þ

where rl(xk) is the Euclidean relative distance between Al

and the input data vector xk:

rl xkð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

al
i;ji
� xi;k

� �2

v

u

u

t

,

da
ffiffiffiffi

N
p

ð7Þ

Equation 7 defines a hyper-sphere on the input space

with radius equal to da
ffiffiffiffi

N
p

. The objective of the training

algorithm is to select a subset of fuzzy subspaces as RBF

centers, so that all the training data are covered by at

least one hyper-sphere. Expressing this requirement in

terms of Eq. 6, the subset of fuzzy subspaces is selected

so that there is at least one fuzzy subspace that assigns a

nonzero multidimensional degree to each input training

vector.

Using more fuzzy sets for each input variable makes

the grid denser and results to the selection of more RBF

centers. However, the distribution of the candidate cen-

ters along the direction of each input variable is the

same, as long as the same number of fuzzy sets is used

for all of them. This restricts the flexibility of the

algorithm, since a different partitioning for each input

variable might result in a better network in terms of

accuracy and/or complexity of the model. To this end, a

non-symmetric variation of the algorithm was proposed

[57], where the domain of each input variable i is par-

titioned into ci fuzzy sets, which results to C fuzzy

subspaces:

C ¼
Y

N

i¼1

ci; i ¼ 1; . . .;N ð8Þ

In this case, the centers and the widths of the fuzzy sets are

different for each input variable and each fuzzy subspace

can be represented as:

Al ¼ al; da
� �

¼ al
1;j1
; al

2;j2
; . . .; al

N;jN

h i

; da1; da2; . . .; daN½ �
n o

;

l ¼ 1; . . .;C

ð9Þ

Equation 7, defining the Euclidean relative distance,

should be adapted to the case of non-symmetric partition,

where the hyper-sphere becomes an N-dimensional hyper-

ellipse:

rl xkð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

al
i;ji
� xi;k

� �2

=N daið Þ2
� �

v

u

u

t ð10Þ

The replacement of the original spherical relative distance

equation with an ellipsoidal one makes the non-symmetric

algorithm more flexible, as it gives the user the opportunity

to partition the domain of each input variable in a different

way. Thus, the resulting RBFs cover more efficiently the

regions of the input space where input data are available

and produce networks with higher accuracy (smaller

modeling error) and/or lower complexity.

After replacing the relative distance equation, the

algorithm finds the subset of fuzzy subspaces that assign a

nonzero multidimensional degree to all input training

vectors, proceeding in the same way with the symmetric

approach. The synaptic weights are calculated using linear

regression of the hidden layer outputs to the real measured

outputs (target values). The regression problem can be

trivially solved using linear least squares in matrix form:

W ¼ YTZ ZTZ
 ��1 ð11Þ

where W, Z, and Y are matrices containing the synaptic

weights, hidden layer outputs, and target values,

respectively.

Results and discussion

In this study, the non-symmetric fuzzy means algorithm is

used to build RBF models for predicting the refractive

index using as inputs experimental data. In order to dem-

onstrate the generic nature and applicability of the neural

network approach, we distinguish two cases: In the first

case, the objective is to predict n for two semiconductor

crystals, while in the second, the objective is to predict

n for a liquid mixture.

Case I: silicon and germanium crystals

Silicon and germanium are the most important semicon-

ductors in solid-state technologies. These materials are

associated with high thermal conductivity, high optical
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damage threshold, high third order nonlinearities, and a

mature fabrication technology inherited by microelectron-

ics. As a result, there exists a continuously increasing

interest in silicon and germanium for photonics applica-

tions [60] ranging from infrared passive elements such as

lenses and waveguides, to active components such as

wavelength converters and laser amplifiers. As a result of

this interest, accurate knowledge of optical constants of

silicon and germanium is very important. To this end, Frey

et al. [61] measured the absolute refractive index using the

Cryogenetic High-Accuracy Refraction Measuring System

(CHARMS) at NASA’s Goddard Space Flight Center, as

a function of both wavelength k and temperature S for

silicon and germanium crystals. The range of these mea-

surements, which have all an accuracy of five decimal digits,

can be found in Table 1. In the same study, the measured data

were fitted to a temperature-dependent Sellmeier model.

In this article, neural network models were trained to

predict the refractive index for each semiconductor crystal

using as inputs the wavelength and temperature. For the

case of silicon, a set of 156 input–output pairs was avail-

able, which was split into training and validation datasets.

The issue of properly splitting the datasets for neural net-

work applications has been the focus of many studies [62].

Although there is no consensus on the subject, the general

practice is to allocate more data for model training. The

ratio of 70–30% for training and validation datasets,

respectively, is one of the most common ones found in the

literature [63] and has been also adopted in this study. The

data were assigned to the two datasets randomly, except for

the three minimum and maximum values for each input

which were kept in the training dataset. This was done to

guarantee that the neural network would not extrapolate

outside of the limits of training (as depicted in Table 1),

where the prediction performance could deteriorate sig-

nificantly. The inability to guarantee a good performance

outside the limits of training is common for all black-box

approaches, as these methodologies do not use a pre-

defined form of equation, but are based solely on the

available training data [64]. In order to find the optimum

partition of the input space, an exhaustive search was

performed testing all combinations of partitions ranging

from 5 to 50 fuzzy sets for each input variable.

For comparison purposes, we also trained a different

RBF network using the symmetric fuzzy means algorithm.

The results were validated using two statistical pointers

over the validation dataset, namely, the maximum error

(Max Error) and the mean absolute relative error (MARE).

The latter is calculated using the following equation:

MARE ¼

X

K

k¼1

yk � ŷkj j
yk

K
ð12Þ

where yk are the real measurements and ŷk the neural net-

work predictions.

Table 2 summarizes the results in the validation dataset

for the two different neural networks and the Sellmeier

model, depicting also the optimal number of fuzzy sets, the

number of RBF centers employed by the RBF networks,

and the total computational time measured on a PC with

Core 2 quad processor at 2.83 GHz. It can be seen that the

non-symmetric algorithm outperforms in terms of accuracy

not only the symmetric approach, but more importantly the

Sellmeier model which has been built solely for this pur-

pose. The superiority of the proposed approach becomes

more apparent taking into account that the Sellmeier

coefficients have been fitted on exactly the same dataset

used for validation of the model, while the NN models are

validated on a dataset that has not been used during the

training phase of the network. This obviously sets a

handicap for the two neural network models, but never-

theless the non-symmetric fuzzy means algorithm outper-

forms the Sellmeier model. It should be noted that the

symmetric approach completes the training in shorter

computational times, which is expected since there are

much fewer combinations of fuzzy sets to test during the

exhaustive search phase. However, the non-symmetric

algorithm offers increased accuracy while keeping the total

Table 1 Case I: measurement range for silicon and germanium

Silicon Germanium

Min Max Min Max

Refractive Index 3.39437 3.54498 3.93819 4.14434

Temperature (K) 30 295 30 295

Wavelength

(microns)

1.1 5.5 1.8 5.5

Table 2 Case I: silicon results
Fuzzy partition Computational

time (s)

Centers Max error MARE

T k

RBF non-symmetric 24 34 42 69 8.58 9 10-4 3.16 9 10-5

RBF symmetric 31 31 11 73 8.61 9 10-4 4.32 9 10-5

Sellmeier equation – – – – 1.04 9 10-3 3.20 9 10-5
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computational time in an acceptable value. Figure 3

depicts the prediction errors for the non-symmetric

approach and the Sellmeier equation, while Fig. 4 shows a

three-dimensional plot of the surface predicted by the RBF

network trained with the non-symmetric algorithm, toge-

ther with the experimentally measured data points.

Regarding the case of germanium crystals, Frey et al.

[61] reported a set of 108 input–output pairs consisting of

temperature–wavelength and refractive index measure-

ments. Employing a similar process with the case of sili-

con, the data were assigned in training and validation

datasets and then two RBF models were trained. Table 3

provides a comparison between the different approaches in

the validation dataset. Once more, the RBF model trained

with the non-symmetric fuzzy means algorithm proves to

be more accurate in terms of smaller maximum and mean

errors on a dataset independent from the one used for

training. This can also be seen in Fig. 5, where the pre-

diction errors for the non-symmetric approach and the

Sellmeier equation are depicted. The surface predicted by

the RBF network trained with the non-symmetric algorithm

is shown in Fig. 6, together with the experimentally mea-

sured data points.

It should be noted that in both cases of silicon and

germanium, the mean error of the neural network predic-

tions is in the fifth decimal place, i.e., the prediction

accuracy approximates the measurement accuracy.

Case II: ethanol–water mixture

In order to establish the application-independent nature of

our approach, we have tested it in a different case, namely,

the modeling of the refractive index in two-component

mixtures. This problem has a twofold significance: Refrac-

tive index measurements may be used with such mixtures

as a diagnostic tool for determining the relative concen-

tration, while they are also suitable to provide physical

information about the molecular evolution in the mixed

systems. In [65], Jimenez-Rioboo et al. report a set of

experimental refractive index data for ethanol–water

solutions. This is a particularly interesting study, since it

has been shown that the refractive index of an ethanol–

water mixture does not follow a simple mixture rule: in

fact, n shows a decrease for low water concentrations,

although the refractive index of water is lower than that of

ethanol [65].

In order to model this nonlinear behavior, we have

trained neural networks that can predict the refractive index

of an ethanol–water mixture, using as inputs the mixture

concentration in water C and the temperature T. The

experimental work reported in [65] consists of a set of 446

input–output data, where n is measured with an accuracy of

six decimal digits. The range of these measurements can be

found in Table 4. The next step was to split the data ran-

domly to a training and validation dataset, keeping the

three minimum and maximum values for each input to the

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 25 50 75 100 125 150

E
rr

o
r

Data point #

RBF Non-Symmetric / Training
RBF Non-Symmetric / Validation
Sellmeier Equation

Fig. 3 Prediction errors for the RBF network trained with the non-

symmetric algorithm and the Sellmeier equation for Case I: silicon

crystal

Fig. 4 Refractive index

predicted by the RBF network

trained with the non-symmetric

algorithm for Case I: silicon

crystal
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training dataset. Similar to Case I, two RBF neural network

models were created, trained with the non-symmetric, and

the symmetric fuzzy means algorithms, respectively.

Table 5 summarizes the results, where the superiority of

the network trained with the non-symmetric algorithm in

terms of accuracy is obvious. It can be seen that n can be

approximated with an accuracy that can reach six decimal

places, i.e., almost equal to the number of decimal places in

the actual measurements.

It should be noted that the Sellmeier equation is not

applicable in this case, and no other empirical equation for

correlating the refractive index with the concentration and

temperature is reported in [65]. Instead, an attempt to fit the

experimental data to a second degree polynomial is pre-

sented; however, the fit is limited to a narrow range of

temperatures (15 �C \ T \ 25 �C), whereas the neural

network model provides good approximation throughout

the measurement range. Figure 7 depicts the surface plot of

the refractive index predicted by the RBF network trained

with the non-symmetric algorithm versus the concentration

and temperature, together with the experimentally mea-

sured data points.

Conclusions

This study presents a new methodology for predicting the

refractive index of various materials, based on experi-

mental data. The mathematical model that correlates the

refractive index with the experimental inputs is based on an

Table 3 Case I: germanium

results
Fuzzy partition Computational

time (s)

Centers Max error MARE

T k

RBF non-symmetric 10 26 36 42 2.84 9 10-4 2.63 9 10-5

RBF symmetric 14 14 10 43 5.72 9 10-4 3.26 9 10-5

Sellmeier equation – – – – 2.10 9 10-3 3.87 9 10-5

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0 25 50 75 100

E
rr

o
r

Data point #

RBF Non-Symmetric / Training
RBF Non-Symmetric / Validation
Sellmeier Equation

Fig. 5 Prediction errors for the RBF network trained with the non-

symmetric algorithm and the Sellmeier equation for Case I: germa-

nium crystal

Fig. 6 Refractive index

predicted by the RBF network

trained with the non-symmetric

algorithm for Case I:

germanium crystal

Table 4 Case II: measurement range for ethanol–water mixture

Min Max

Refractive index 1.358977 1.372772

Temperature (�C) 0 27

Concentration (water mol%) 1.09 51.89
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RBF neural network trained with the non-symmetric fuzzy

means algorithm, which presents higher approximation

accuracy compared to other training methodologies. The

proposed approach was applied in cases consisting of dif-

ferent materials, namely, two semiconductor crystals and a

binary liquid mixture, and the results showed that the

produced models provide an accuracy of several decimal

places that in most cases is equal to the number of decimal

places in the actual measurements, while successfully

taking into account various parameters affecting the

refractive index. In fact, for the case of predicting the

refractive index in semi-conductor crystals, the neural

network approach surpassed in terms of accuracy standard

methodologies used for this purpose as the Sellmeier

equation. The generic nature of the neural network

approach and the fact that neural networks can approximate

any nonlinear function provided that sufficient training data

are available, indicate that the same approach can be

applied for refractive index prediction in any kind and form

of material.
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